Analysis of Dimensionality Reduction in Intrusion Detection

نویسندگان

  • Theyazn H Aldhyani
  • Manish R Joshi
چکیده

Intrusion detection system is an important technology in the market sector as well as in the area of research. Intrusion detection is considered a useful security tool that assists in preventing attacker’s access to networks or systems. The determination of genuineness of packets is a key issue and various approaches of classification have been presented. The complexity of a classifier is greatly reduced if the numbers of attributes in a data set are reduced. Analysis of dimensionality reduction and it is impacting thereof is the objective of our study. An experimental study is carried out to build up a classifier on a standard dataset of network traffic data that includes normal packets and abnormal packets. A rough set theory and information gain approaches are employed to reduce dimensionality of network traffic data set. The features obtained by the rough set theory and information gain are used to train and test the J48 classifier. A comparative analysis of the results obtained a reduced attribute set and original attributes are presented. The results shows that the performance of J48 classifier with the reduced attributes (rough set and information gain) is better, which is at the cost of time KeywordIntrusion Detection System, Rough Set Theory, Information Gain, J48 Classifier

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images

Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...

متن کامل

Support Vector Machine Based Intrusion Detection Method Combined with Nonlinear Dimensionality Reduction Algorithm

Network security is one of the most important issues in the field of computer science. The network intrusion may bring disaster to the network users. It is therefore critical to monitor the network intrusion to prevent the computers from attacking. The intrusion pattern identification is the key point in the intrusion detection. The use of the support vector machine (SVM) can provide intelligen...

متن کامل

A Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems

Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...

متن کامل

A Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems

Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...

متن کامل

New Intelligent Computer Intrusion Detection Method Using Hessian Local Linear Embedding and Multi-Kernel Support Vector Machine

Computer networks frequently collapse under the destructive intrusions. It is crucial to detection hidden intrusions to protect the computer networks. However, a computer intrusion often distributes high dimensional characteristic signals, which increases the difficulty of intrusion detection. Literature review indicates that limited work has been done to address the nonlinear dimension reducti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015